38 research outputs found

    The origin of Oxalis corniculata L.

    Get PDF
    Background Oxalis corniculata L. is a weed with a world-wide distribution and unknown origin. Though it belongs to a section of the genus from South America, the evidence that this species came from there is weak. Methods We reviewed the evidence for the origin of O. corniculata using herbarium specimens, historic literature and archaeobotanical research. We also summarized ethnobotanical literature to understand where this species is most used by humans as a medicine. Results Despite numerous claims that it is native to Europe there is no strong evidence that O. corniculata occurred in Europe before the 15th century. Nor is there reliable evidence that it occurred in North or South America before the 19th century. However, there is direct archaeobotanical evidence of it occurring in south–east Asia at least 5,000 years ago. There is also evidence from historic literature and archaeobotany that it reached Polynesia before European expeditions explored these islands. Examination of the traditional use of O. corniculata demonstrates that is most widely used as a medicine in south–east Asia, which, while circumstantial, also points to a long association with human culture in this area. Discussion The most likely origin for O. corniculata is south–east Asia. This is consistent with a largely circum-Pacific distribution of section Corniculatae of Oxalis. Nevertheless, it is likely that O. corniculata spread to Europe and perhaps Polynesia before the advent of the modern era through trade routes at that time

    WorldFAIR Project (D10.1) Agriculture-related pollinator data standards use cases report

    Get PDF
    Although pollination is an essential ecosystem service that sustains life on Earth, data on this vital process is largely scattered or unavailable, limiting our understanding of the current state of pollinators and hindering effective actions for their conservation and sustainable management. In addition to the well-known challenges of biodiversity data management, such as taxonomic accuracy, the recording of biotic interactions like pollination presents further difficulties in proper representation and sharing. Currently, the widely-used standard for representing biodiversity data, Darwin Core, lacks properties that allow for adequately handling biotic interaction data, and there is a need for FAIR vocabularies for properly representing plant-pollinator interactions. Given the importance of mobilising plant-pollinator interaction data also for food production and security, the Research Data Alliance Improving Global Agricultural Data Community of Practice has brought together partners from representative groups to address the challenges of advancing interoperability and mobilising plant-pollinator data for reuse. This report presents an overview of projects, good practices, tools, and examples for creating, managing and sharing data related to plant-pollinator interactions, along with a work plan for conducting pilots in the next phase of the project. We present the main existing data indexing systems and aggregators for plant-pollinator interaction data, as well as citizen science and community-based sourcing initiatives. We also describe current challenges for taxonomic knowledge and present two data models and one semantic tool that will be explored in the next phase. In preparation for the next phase, which will provide best practices and FAIR-aligned guidelines for documenting and sharing plant-pollinator interactions based on pilot efforts with data, this Case Study comprehensively examined the methods and platforms used to create and share such data. By understanding the nature of data from various sources and authors, the alignment of the retrieved datasets with the FAIR principles was also taken into consideration. We discovered that a large amount of data on plant-pollinator interaction is made available as supplementary files of research articles in a diversity of formats and that there are opportunities for improving current practices for data mobilisation in this domain. The diversity of approaches and the absence of appropriate data vocabularies causes confusion, information loss, and the need for complex data interpretation and transformation. Our explorations and analyses provided valuable insights for structuring the next phase of the project, including the selection of the pilot use cases and the development of a ‘FAIR best practices’ guide for sharing plant-pollinator interaction data. This work primarily focuses on enhancing the interoperability of data on plant-pollinator interactions, envisioning its connection with the effort WorldFAIR is undertaking to develop a Cross-Domain Interoperability Framework. Visit WorldFAIR online at http://worldfair-project.eu. WorldFAIR is funded by the EC HORIZON-WIDERA-2021-ERA-01-41 Coordination and Support Action under Grant Agreement No. 101058393

    Liberating host–virus knowledge from biological dark data

    Get PDF
    Connecting basic data about bats and other potential hosts of SARS-CoV-2 with their ecological context is crucial to the understanding of the emergence and spread of the virus. However, when lockdowns in many countries started in March, 2020, the world's bat experts were locked out of their research laboratories, which in turn impeded access to large volumes of offline ecological and taxonomic data. Pandemic lockdowns have brought to attention the long-standing problem of so-called biological dark data: data that are published, but disconnected from digital knowledge resources and thus unavailable for high-throughput analysis. Knowledge of host-to-virus ecological interactions will be biased until this challenge is addressed. In this Viewpoint, we outline two viable solutions: first, in the short term, to interconnect published data about host organisms, viruses, and other pathogens; and second, to shift the publishing framework beyond unstructured text (the so-called PDF prison) to labelled networks of digital knowledge. As the indexing system for biodiversity data, biological taxonomy is foundational to both solutions. Building digitally connected knowledge graphs of host–pathogen interactions will establish the agility needed to quickly identify reservoir hosts of novel zoonoses, allow for more robust predictions of emergence, and thereby strengthen human and planetary health systems.info:eu-repo/semantics/publishedVersio

    Integrating invasive species policies across ornamental horticulture supply-chains to prevent plant invasions

    Get PDF
    1.Ornamental horticulture is the primary pathway for invasive alien plant introductions. We critically appraise published evidence on the effectiveness of four policy instruments that tackle invasions along the horticulture supply chain: pre-border import restrictions, post-border bans, industry codes of conduct and consumer education. 2.Effective pre-border interventions rely on rigorous risk assessment and high industry compliance. Post-border sales bans become progressively less effective when alien species become widespread in a region. 3.A lack of independent performance evaluation and of public disclosure, limits the uptake and effectiveness of voluntary codes of conduct and discourages shifts in consumer preference away from invasive alien species. 4.Policy implications. Closing the plant invasion pathway associated with ornamental horticulture requires government-industry agreements to fund effective pre- and post-border weed risk assessments that can be subsequently supported by widely adopted, as well as verifiable, industry codes of conduct. This will ensure producers and consumers make informed choices in the face of better targeted public education addressing plant invasions

    Seven recommendations to make your invasive alien species data more useful

    Get PDF
    Science-based strategies to tackle biological invasions depend on recent, accurate, well-documented, standardized and openly accessible information on alien species. Currently and historically, biodiversity data are scattered in numerous disconnected data silos that lack interoperability. The situation is no different for alien species data, and this obstructs efficient retrieval, combination, and use of these kinds of information for research and policy-making. Standardization and interoperability are particularly important as many alien species related research and policy activities require pooling data. We describe seven ways that data on alien species can be made more accessible and useful, based on the results of a European Cooperation in Science and Technology (COST) workshop: (1) Create data management plans; (2) Increase interoperability of information sources; (3) Document data through metadata; (4) Format data using existing standards; (5) Adopt controlled vocabularies; (6) Increase data availability; and (7) Ensure long-term data preservation. We identify four properties specific and integral to alien species data (species status, introduction pathway, degree of establishment, and impact mechanism) that are either missing from existing data standards or lack a recommended controlled vocabulary. Improved access to accurate, real-time and historical data will repay the long-term investment in data management infrastructure, by providing more accurate, timely and realistic assessments and analyses. If we improve core biodiversity data standards by developing their relevance to alien species, it will allow the automation of common activities regarding data processing in support of environmental policy. Furthermore, we call for considerable effort to maintain, update, standardize, archive, and aggregate datasets, to ensure proper valorization of alien species data and information before they become obsolete or lost

    The global naturalized Alien Flora (GloNAF) database

    Get PDF
    This dataset provides the Global Naturalized Alien Flora (GloNAF) database, ver-sion 1.2. Glo NAF represents a data compendium on th e occurrence and identit y of naturalizedalien vascular plant taxa across geographic regions (e.g. countries, states, provinces, districts,islands) around the globe. The dataset includes 13,939 taxa and covers 1,029 regions (including381 islands). The dataset is based on 210 data sources. For each ta x on-b y-region combination, wepr ovide information on whether the tax on is consider ed to be naturalized in the specific region(i.e. has established self-sustaining popula tions in the wild). Non-native taxa are marked as“alien”, when it is not clear whether they are naturalized. To facilitate alignment with other plantdatabases, we pro v ide f or each taxon the name as given in the original data source and the stan-dardized taxon and family names used by The Plant List Version 1.1 (http://www.theplantlist.org/). We pro vide an ESRI shapefile including polygons f or each region and informa tion on whetherit is an island or a mainland region, the country and the Taxonomic Databases Working Group(TDWG) regions it is part of (TDWG levels 1–4). We also provide several variables that can beused to filter the data according to quality and completeness of alien taxon lists, which varyamong the combinations of regions and da ta sources. A pre vious version of the GloNAF dataset(version 1.1) has already been used in several studies on, for example, historical spatial flows oftaxa between continents and geographical patterns and determinants of naturalization across dif-ferent taxonomic groups. We intend the updated and expanded GloNAF version presented hereto be a global resource useful for studying plant inv asions and changes in biodiversity from regio-nal to global scales. We release these data into the public domain under a Crea ti ve CommonsZer o license waiver (https://creati v ecommons.org/share-y our -work/public-domain/cc0/). Wheny ou use the da ta in your publication, we request that y ou cite this da ta paper. If GloN AF is amajor part of the data analyzed in your study, you should consider inviting the GloNAF coreteam (see Metadata S1: Originators in the Overall project description) as collaborators. If youplan to use the GloNAF dataset, we encourage y ou to contact the GloNAF core team to checkwhether there have been recent updates of the dataset, and whether similar analyses are already ongoing

    INVASIVESNET towards an International Association for Open Knowledge on Invasive Alien Species

    Get PDF
    In a world where invasive alien species (IAS) are recognised as one of the major threats to biodiversity, leading scientists from five continents have come together to propose the concept of developing an international association for open knowledge and open data on IAS—termed “INVASIVESNET”. This new association will facilitate greater understanding and improved management of invasive alien species (IAS) and biological invasions globally, by developing a sustainable network of networks for effective knowledge exchange. In addition to their inclusion in the CBD Strategic Plan for Biodiversity, the increasing ecological, social, cultural and economic impacts associated with IAS have driven the development of multiple legal instruments and policies. This increases the need for greater co-ordination, co-operation, and information exchange among scientists, management, the community of practice and the public. INVASIVESNET will be formed by linking new and existing networks of interested stakeholders including international and national expert working groups and initiatives, individual scientists, database managers, thematic open access journals, environmental agencies, practitioners, managers, industry, non-government organisations, citizens and educational bodies. The association will develop technical tools and cyberinfrastructure for the collection, management and dissemination of data and information on IAS; create an effective communication platform for global stakeholders; and promote coordination and collaboration through international meetings, workshops, education, training and outreach. To date, the sustainability of many strategic national and international initiatives on IAS have unfortunately been hampered by time-limited grants or funding cycles. Recognising that IAS initiatives need to be globally coordinated and ongoing, we aim to develop a sustainable knowledge sharing association to connect the outputs of IAS research and to inform the consequential management and societal challenges arising from IAS introductions. INVASIVESNET will provide a dynamic and enduring network of networks to ensure the continuity of connections among the IAS community of practice, science and management

    Alien pathogens on the horizon: opportunities for predicting their threat to wildlife

    Get PDF
    According to the Convention on Biological Diversity, by 2020 invasive alien species (IAS) should be identified and their impacts assessed, so that species can be prioritized for implementation of appropriate control strategies and measures put in place to manage invasion pathways. For one quarter of the IAS listed as the “100 of the world's worst” environmental impacts are linked to diseases of wildlife (undomesticated plants and animals). Moreover, IAS are a significant source of “pathogen pollution” defined as the human-mediated introduction of a pathogen to a new host or region. Despite this, little is known about the biology of alien pathogens and their biodiversity impacts after introduction into new regions. We argue that the threats posed by alien pathogens to endangered species, ecosystems, and ecosystem services should receive greater attention through legislation, policy, and management. We identify 10 key areas for research and action, including those relevant to the processes of introduction and establishment of an alien pathogen and to prediction of the spread and associated impact of an alien pathogen on native biota and ecosystems. The development of interdisciplinary capacity, expertise, and coordination to identify and manage threats was seen as critical to address knowledge gaps
    corecore